Navigation in the Ecological Space

2 - Assessing Explanatory Variables

Miguel Alvarez & Ildikó Orbán

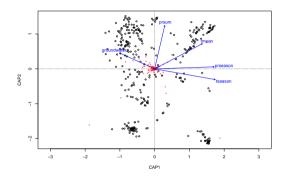
Timeslots

 $2^{nd} - 3^{rd}$ February 2024

- 09:00 12:00 Morning Session
- 13:30 16:30 Afternoon Session

10 - 15 min break

Trainers


Miguel Alvarez

Ildikó Orbán

Content

- Constrained Ordination
 - Linear
 - Unimodal
 - Distance-Based
- Permutation Analysis

Disclaimer

- Licenced by Creative Commons 4.0 CC BY-SA
- It may contain a pinch of AI

Navigation in the Ecological Space

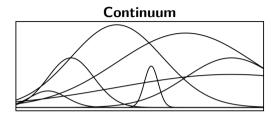
Welcome to our Workshop!

Plant species composition as a response to environmental factors and anthropogenic disturbance is a central principle in vegetation science and biogeography. Assessing vegetation species composition as a response to environmental factors is not trivial, as most common modelling approaches are restricted to a single response variable and not multiple responses. Multivariate statistics, including indirect (unconstrained) and direct (constrained) ordination analysis, are tools to address this problem.

 ⊕ Homepage
 ♠ GitHub
 GitLab
 ♠ Mastodon
 ♠ LinkedIn
 ☒ Email

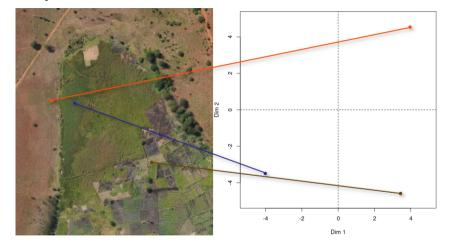
https://kamapu.gitlab.io/multivar/

Response Variables and Factors

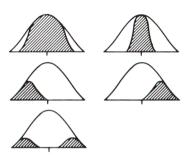

$$\hat{y}_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_n x_{in} + \epsilon_i$$

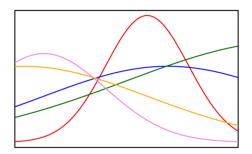
- Response (dependent variable)
- Factors (explanatory variables)

Henry A. Gleason (1882–1975)

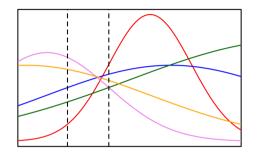

- Gleasonian Approach
 - Continuum Concept
 - Individualistic Behaviour of Plants
 - Ecosystem

Superorganismus

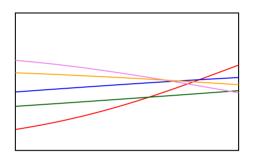




- Physiological vs. Ecological Optimum
 - Tolerance
 - Competition (intra and interspecific)



Ordination Analysis Unimodal Response



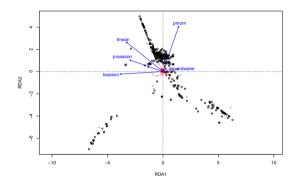
Ordination Analysis

Unimodal Response

Linear (Monotonic) Model

Constrained Ordination

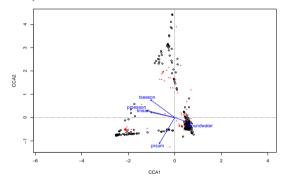
	Indirect / Unconstrained Ordination	Direct / Constrained / Canonical Ordination
Linear Response	Principal Component Analysis (PCA)	Redundancy Analysis (RDA)
Unimodal Response	Correspondence Analysis (CA) Detrended Correspondence Analysis (DCA)	Canonical Correspondence Analysis (CCA)
Distance-Based	Principal Coordinates Analysis (PCoA) Non-Metric Multidimensional Scaling (NMDS)	Canonical Analysis on Principal Coordinates (CAP) Distance-Based Redundance Analysis (db-RDA)



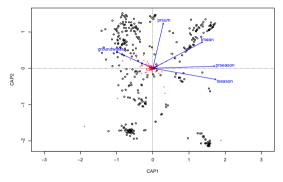
Constrained Ordination

$$\hat{y}_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_n x_{in} + \epsilon_i$$

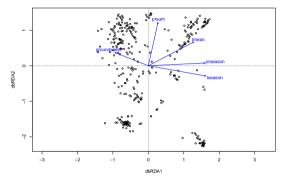
- Response Variable (Species Composition)
- Explanatory variables (Environment)
 - Multiple Linear Regression on scores


Redundancy Analysis (RDA)

Canonical Correspondence Analysis (CCA)


```
cca_ord <- cca(cross_tab ~ groundwater +
    tmean + tseason + prsum + prseason,
    data = wetlands$env)
plot(cca_ord)</pre>
```


Canonical Analysis on Principal Coordinates (CAP)


```
cap_ord <- capscale(cross_tab ~ groundwater +
    tmean + tseason + prsum + prseason,
    data = wetlands$env, dist = "bray")
plot(cap_ord)</pre>
```


Distance-Based Redundancy Analysis (db-RDA)

```
dbrda_ord <- dbrda(cross_tab ~ groundwater +
    tmean + tseason + prsum + prseason,
    data = wetlands$env, dist = "bray")
plot(dbrda_ord)</pre>
```


Thank You!

GreenGaDe